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ABSTRACT. In this paper, we study conformally flat 4-th root (a, 3)-
metrics on a manifold M of dimension n > 3. We prove that ev-
ery conformally flat 4-th root (a,8)-metric with relatively isotropic
mean Landsberg curvature must be either Riemannian metrics or lo-
cally Minkowski metrics.
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1. Introduction

The study of Conformal Geometry has a long and venerable history. From
the beginning, conformal geometry has played an important role in Phys-
ical Theories. The conformal transformation of Riemannian metrics have
been well studied by many geometers. The Weyl theorem states that the
projective and conformal properties of a Finsler space determine the metric
properties uniquely. There are many important local and global results in
Riemannian conformal geometry, which in turn lead to a better understand-
ing on Riemann manifolds.

As Chern said Finsler geometry is just Riemannian geometry without
the quadratic restriction. Thus the conformal properties of a Finsler metric
deserve extra attention. Let F and F be two arbitrary Finsler metrics on a
manifold M Then we say that F' is conformal to F' if and only if there exists
a scalar function ¢ = o(x) such that F(z,y) = @ F(z,y). The scalar
function ¢ is called the conformal factor.

A Finsler metric F' = F(z,y) on a manifold M is called a conformally
flat metric if there exists a locally Minkowski metric I = F(y) such that
F = e*®) [ where k = k(z) is a scalar function on M. A new and hot issue
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is to characterization of conformally flat Finsler metrics. In [2], Asanov con-
structed a Finslerian metric function on the manifold N = R x M, where
M is a Riemannian manifold endowed with two real functions, and showed
that the tangent Minkowski spaces of such a Finsler space are conformally
flat. This motivated him to propose a Finslerian extension of the electro-
magnetic field equations whose solutions are explicit images of the solutions
to the ordinary Maxwell equations.

In order to find conformally flat Finsler metrics, we consider the class of
m-th root Finsler metrics. Let (M, F') be an n-dimensional Finsler manifold,
TM its tangent bundle and (2%,%") the coordinates in a local chart on T'M.
Let F : TM — R be a scalar function defined by F = %/A, where A is
given by A = a;,_;, (z)y"y®...y" such that a;, ; is symmetric in all
its indices. Then F is called an m-th root Finsler metric. An m-th root
Finsler metric can be regarded as a direct generalization of a Riemannian
metric in the sense that the 2-th root metric is a Riemannian metric F' =
Vaij(x)yiyi. The fourth root metrics F = {/a;jr(z)yiylyky! are called
the quartic metrics. The special quartic metric F = /yiyiyFyl is called
Berwald-Moé6r metric which plays an important role in theory of space-time
structure, gravitation and general relativity. For more progress, see [0], [7],
4] and [10].

In [9], the first author and Razgordani proved that every conformally
flat weakly Einstein 4-th root («, 3)-metric on a manifold M of dimension
n > 3 is either a Riemannian metric or a locally Minkowski metric. Also,
they showed that every conformally flat 4-th root («, 3)-metric of almost
vanishing =-curvature on a manifold M of dimension n > 3 reduces to a
Riemannian metric or a locally Minkowski metric. In this paper, we study
conformally flat 4-th root (v, 3)-metric with relatively isotropic mean Lands-
berg curvature. More precisely, we prove the following.

Theorem 1.1. Let F' = F(x,y) be a conformally flat 4-th root («, §)-metric
on a manifold M of dimension n > 3. Suppose that F' has relatively isotropic
mean Landsberg curvature

(1.1) J+c(z)FI =0,

where ¢ = ¢(x) is a scalar function on M. Then F reduces to a Riemannian
metric or a locally Minkowski metric.

2. PRELIMINARIES

Let M be a n-dimensional C*° manifold and T'M = |J,c,; T M the tan-
gent bundle. Let (M, F) be a Finsler manifold. The following quadratic
form g, on T; M is called fundamental tensor

1 92
g, (u,v) = 5@[}?2@—# su + tv) | |s=t=0, u,v € Ty M.

Let z € M and F, := F|r, 5. To measure the non-Euclidean feature of Fy,
for a non-zero vector y € T, My := T, M — {0}, define C,, : T, M x T, M x
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T.M — R by

1d 1 o 5
Cy(u,v,w) := ¥ {ngU’(u’v)]t:o = 19r9:5% F (y+ru+sv+tw)]

r=s=t=0
where u,v,w € T, M. By definition, C, is a symmetric trilinear form on
Ty M. The family C := {Cy},ernm, is called the Cartan torsion. Thus C =0
if and only if F' is Riemannian.

For y € T, My, define I, : T, M — R by

i=1

where {0;} is a basis for T,M at © € M. The family I := {I,},ern, is

called the mean Cartan torsion. Thus, I, (u) := I;(y)u’, where I; := ¢g/*Cjy.
On the slit tangent bundle 7'My, the Landsberg curvature L;;j, := Lijkdxi®

dzd ® dz¥ is defined by Liji, == Cijg;my™, where ”;” denotes the horizontal

covariant derivative with respect to F'. Further, the Landsberg curvature

can be expressed as following

(2.1) Liji = —%FFym (G™) iy

A Finsler metric is called the Landsberg metric if L;j;, = 0.

The horizontal covariant derivatives of the mean Cartan torsion I along
geodesics give rise to the mean Landsberg curvature J, : T, M — R which
are defined by Jy(u) := J;i(y)u’, where

Ji = Lsy®.
Here, “|” denotes the horizontal covariant derivative with respect to the
Berwald connection of F. The family J := {Jy}yernm, is called the mean

Landsberg curvature. Also, the mean Landsberg curvature can be expressed
as following

(2.2) Ji = g Liju,

A Finsler metric F' on a manifold M is called of relatively isotropic mean
Landsberg curvature if
J+cFI=0,

where ¢ = ¢(z) is a scalar function on M.

In this paper, we will focus on studying regular (c, 8)-metrics. Let “|”
denote the covariant derivative with respect to the Levi-Civita connection
of a. Denote
1
3005 =)
sij = aimsm]-, = aimrmj, rji= birij, 5j 1= bisij,
where (%) := (a;;)~! and ¥ := a/*b,. We put

1
rij = 5 iy +bjpi),  sij =

ro =1y, S0 =8y, 10 =Ty Y, Sio = Sijy’.
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Let G and G?, denote the geodesic coefficients of F' and « respectively in
the same coordinate system. Then we have

(2.3) G' =G+ aQs'y + {roo — 2Qaso H{Ub' + 0a~y'},
where
__ ¢
T
0. 08 =56 + ¢
209 — s/ + (b2 — 5%)¢"]
- @'
BE R T,
For more details, see [1]. Let

A:=145Q + (V¥ —sH)Q,
= —(nA+1+sQ)(Q—sQ)— (b*—s2)(1+sQ)Q",

/
Uy = VB al | V=5

A2
hj = bj - a_lsyj :

Y

By (2.1), (2.2), (2.3), the mean Landsberg curvature of the («, /)-metric
F =a¢(s), s = f/a, is given by

1 20% 1@ /

2

Q o
+ m |:\I/1 + SZ:| (7’00 — 2@Qso)hj

+a [ — a?Q'sohj + aQ(a’s; — y;80) + a*Asjo
2 @
+ o (rj0 — 2aQs;) — (oo — ZQQSO)yj] A
Here, y; = a;;4". See [3] and [5].

3. PROOF OF THEOREM 1.1

in this section, we are going to prove Theorem 1.1. To prove it, we need
the following.

Lemma 3.1. ([3]) For an («,)-metric F = a¢(s), s = f/a, the mean
Cartan torsion is given by

o
(3.1) L— —%Z(qﬁ — s¢)hs.

In [3], the following was proved.



CONFORMALLY FLAT 4-TH ROOT («, 5)-METRICS ... 29

Lemma 3.2. ([3]) An (o, B)-metric F' is a Riemannian metric if and only
if ®=0.

In [3], the following formula obtained
1 208 [®

a? ®
+m |:\I/1 + SA:l (TOO — 2aQSO)h]

+a [ — a?Q'sohj + aQ(a®s; — yjs0) + a®Asjo + a®(rjo — 2aQs;)

(3.2) —(ro0 — 2aQso)y]} % + c(x)a4<1>(<25 — S(ﬁ/)hj}.

Also, we remark the following key lemma.

Lemma 3.3. ([l]) Let F = a¢(s), s = B/a, be an (o, §)-metric. Then F
is locally Minkowskian if and only if a is a flat Riemannian metric and 3
is parallel with respect to .

Also, the following holds.

Lemma 3.4. ([3]) If ¢ = ¢(s) satisfies V1 = 0, then F is Riemannian.

Now, assume that F' = a¢(s), s = [/a, is a conformally flat Finsler
metric, that is, F' is conformally related to a Minkowski metric F . Then
there exists a scalar function ¢ = o () on the manifold, so that F = e F.
It is easy to see that F' = a¢(3), 5 = S/a. We have & = e@a and
B = e?(*) 3 which are equivalent to

20(m)aij’ b,; = ea(:c)bi'

aj; =e
Let “||” denote the covariant derivative with respect to the Levi-Civita con-
nection of &. Put o; := 0o/02" and ¢' := a”0;. The Christoffel symbols
F;k of a and the Christoffel symbols F;k of & are related by

F;k = I‘;k + 5§O'k + 6,iaj — o*iajk.
Hence, one can obtain

7 861 T o r
(3.3) bijj = 307 bsI's, = €7(by; — bjoi + bro"aij).
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By Lemma 3.31, for Minkowski metric F, we have b;; = 0. Thus

ll3

(34) b’L‘J = bjai - bTO'TaZ‘j,

1 1
(35) Tij = 5(0'2‘1)]' + O'jb,') — erraij, Sij = 5(02‘5]' + O'jbi),
1 1 1
(3.6) w:—iwmﬂ@+§qw, %=§®WU%—%§
1 1
(3.7) ri0 = [0iB + (oY )b — opb"ys,  sio = Z[oiB + (opy")bs].
2 2

Further, we have

(3.8)
1 1 1 1

Too = (Uryr)ﬁ - (UryT)OzZ, To = §(Uryr)b2 - §(Urbr)/87 S0 = §(Uryr)6 - §(O'ryr)b2'

By (3.8), the conformally flat (a, 8)-metrics satisfying 7o + s = 0 which
is equivalent to the length of 8 with respect to a being a constant. We
take an orthonormal basis at any point x with respect to « such that o =

S (y)? and B = by, where b := ||B;|la- By using the same coordinate
transformation v : (s,u?) — (y*) in T, M, we get

(3.9) y= ———a, yr=ut 2<A<n,

a?
N y
where & = /> o(u?)?. We have

b bs  _
= —a, = —a.
N N
Put g := ocqu. Then, by (3.5)-(3.7), (3.9) and (3.10) we have

(3.10) o'

bsoya 1

(3.11) ro0 = —baldz + ﬁ, rg = 5()250 = —Sp, r10 = 5()07(),
V — S
1 bsa 1
(3.12) gavse (bo1)ua, s1 =0, s4 = ——0ab?,

A0 = 57?2 — 2 9
1 1 opbsa
(313) S10 = ibO'(), SA0 = 5@,

2 Jh2 o2
(3.14) hi=b— > hA:——Zziﬂﬁ.
6

Proof of Theorem 1.1: We remark that b = constant. If b = 0, then
F = ¢"®)4 is a Riemannian metric. Now, let F'is not Riemannian metric.
Assume that F' is a conformally flat («, 8)-metric with relatively isotropic
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mean Landsberg curvature. By (3.2) and ro + sp = 0, we get
042 4 2/ 2
s | W1+ 57| (ro0 — 20Qs0)h; + | — a?Q'soh; + aQ(a’s; — y;s0)

(3.15)

)
+ 042Asj0 + a2(rj0 —2aQs;) — (roo — QaQso)yj] A + c(x)a4CI>(<Z> — sd)’)hj =0.

Letting j = 1 in (3.15), we have

2 d
= [‘1/1 + s—|(roo — 2aQs0)h1 + [ — a’Q'soh1 + aQ(a*s1 — y150)

b2 — 89 A
(3.16)
P
+ a?Asig + o (r10 — 20Qs1) — (roo — 2aQso)y1] — +c(x)a*®(¢p — s¢')hy = 0.

A

Putting (3.10)-(3.14) into (3.16) and multiplying the result with 2A(b? —
$2)5/2 implies that
22 (0% — $2)*2A(bDpe — bBs¢'c — Uyop)at + 2V — s2)a0(b10Q — *PA — b2 BQ's?)
(3.17)

+ 20620, AQ + b2D + b2 PQs + 2V As)a® = 0.
From (3.17), we get
(3.18)

Ab®Pgpc — bPs¢'c — Wioq] =0,
(3.19)

Go(b*Q" — VDA — V?BQ's%) + 262V AQ + b?D + b2 DQs + 2T As) = 0.
Note that A = Q' (b — s%) + sQ + 1. Simplifying (3.19) yields

(U1 AQ + U1 As)dy = 0,

that is
(3.20) U AB2Q + s)do = 0.
Letting j = A in (3.15), we have

a? P
2 [\Ifl + SA:| (roo — 2aQso)ha + Oé[ — a2Q'sohs + aQ(a®s4 — yaso)
(3.21)

¢
+ a?Asag + a* (140 — 2aQs4) — (roo — 20Q80)ya] N c(x)at®(p — s¢')hg = 0.

Putting (3.10)-(3.14) into (3.21) and by using the similar method used in
the case of j = 1, we get

(3.22)
—(sA + s + D*Q)*®oad® + [(sA + s + b*Q)b*® + 25(b*Q + s)¥1A]Goua = 0,
(3.23) 5(b? — s2)[b(¢ — 5¢')Pc — Ui01]Auy = 0.
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It is easy to see that (3.23) is equivalent to (3.18). Further, multiplying
(3.22) with u4 implies that

(3.24) s(b?’Q + s)¥1 Agpa’® = 0.

It is easy to see that (3.24) is equivalent to (3.20). In summary, confor-
mally flat («, §)-metrics with relatively isotropic mean Landsberg curvature
satisfy (3.18) and (3.20). According to (3.20), we have some cases as follows:

Case (i): If b2Q + s = 0, then we have ¢ = kvb%2 — s2, which is a con-
tradiction with the assumption that ¢ = ¢(s) is ¢(s) = Va1 + azs? + azs?,.
Then we have b?Q + s # 0.

Case (ii): If ¥; =0, then by Lemma 3.4, F' is Riemannian.

Case (iii): If ¥; # 0, then 04 = 0. In the following, we prove that if
U, # 0, then by (3.18) one can get o1 = 0.
Assume that

(3.25) ¢ = {l/al + ass? +asst,  4dajaz — a% #0

here a1, as, ag are numbers independent of s and a; # 0,7 = 1,2,3. Simpli-
fying (3.18) and multiplying it by A2, we get

(3.26)
{52+ (>~ H)a/)A - ;(52 ~ )2 for — bAR() — s)e = 0

Putting (3.25) into (3.26) and multiplying it by

(3.27) —(azs? + 2a1)" /(a1 + azs? + azst)3
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by using maple program, we can obtain the following

2 <(n — 8)b% — 3ns? + 6s )b2 55104 {(—n + 8)88ays® + (9n — 72)b4ars® + (—16n + 128)a1b?s

+ (24 — 48n)s12a; — ((n — 8)b% — 5ns? + 432) b4a3310}a3 +9 {(4n +7)B8s% — (10n + 160)b%s®

— (9n — 210)b*s® + (40n — 32)310}a§ + (3(n — 8)b* + (—2n + 16)b%s? + (13n + 22)s4> b aiazs®

+ (n 4 1)b°s'2a3

ad + 432{ ( — (30 + 18)85 — (3n + 141)b%s? + (94 — 11)b%s* + (360 + 48)36) a2
s4<(5n — 82)05 + (83n — 94)b2s* — (28n — 80)s >a3a1 + ( (n— 8)b% + (n +19)s )b4a3s }a1a§
~8 [((Gn + 18)b%s? + (3n + 42)b%s? — (161 — 64)s° — 3b6) ai + [(15n +36)b5 + (2n — 52)b1s?
+3(34 — 17)b%s* + 3(8n — 32)36} azarst + [(Qn + 15)b* 4 (2 — 2n)b%s% 4+ 10(n — 2)s }b2a3s ] a2as
- 16{ ((3n +18)b%s2 — (4n — 16)34) a2 + [(15n — 54)b*s? + (82 — 20m)b2s* + (12n — 48)s%]ayass?
+ {18 (n — 1)b5 + (69 — 45n)b"s> 4 (34n — 68)b%s* — (8n + 16)s }a336}a§] (4a1a3 — a3)oy
{ nas + 4agazb*(n + 1) — 16aya3(n — 2))36 + ((4 —2n)a3b? + 8(n + 4)aras + 24nb2a1a3) st

6
_ _ 2 2 7 2 _ 3 9y 4
+ (4(n — 5)b%ag + 8(n + 4)ay )a1s® — 24b%a? 3 (4araz — a3)(azs® + 2a1)" | (agazb® — 4aaz + 2a2)s
(3.28)
+ (6b2a1a3 — 562(1% + 2a1a2)52 + al(a2b2 + 2a1)> .

Let us put

1
v (4aras — a3)’
Multiplying (3.28) with v implies that

(3.29) IT; 5% + Mgs?! + ... + Tz 4 Tlgs = 0,
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where II;(1 < ¢ < 25), are polynomials of a1, a2, as, b, ¢, and o1. Equation
(3.29) is equivalent to the following two equations

(3.30) M 5%° + 387 + ... + g3 + Tlgss = 0,
(3.31) ps?t 4 TIys®? + ... 4 Tgys? + Ty = 0,

where Tlys = 96b%alo; . (3.31) implies that Ilss = 0, because b # 0 and
a1 # 0, then Tlsg = 0 implies that 01 = 0 .Together with A = 0, it follows
that o is a constant, which means that F' is a locally Minkowski metric.
This completes the proof. O
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