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Abstract. In this paper, we study conformally flat 4-th root (α, β)-
metrics on a manifold M of dimension n ≥ 3. We prove that ev-
ery conformally flat 4-th root (α, β)-metric with relatively isotropic
mean Landsberg curvature must be either Riemannian metrics or lo-
cally Minkowski metrics.
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1. Introduction
The study of Conformal Geometry has a long and venerable history. From

the beginning, conformal geometry has played an important role in Phys-
ical Theories. The conformal transformation of Riemannian metrics have
been well studied by many geometers. The Weyl theorem states that the
projective and conformal properties of a Finsler space determine the metric
properties uniquely. There are many important local and global results in
Riemannian conformal geometry, which in turn lead to a better understand-
ing on Riemann manifolds.

As Chern said Finsler geometry is just Riemannian geometry without
the quadratic restriction. Thus the conformal properties of a Finsler metric
deserve extra attention. Let F and F̃ be two arbitrary Finsler metrics on a
manifold M Then we say that F is conformal to F̃ if and only if there exists
a scalar function σ = σ(x) such that F (x, y) = eσ(x)F̃ (x, y). The scalar
function σ is called the conformal factor.

A Finsler metric F = F (x, y) on a manifold M is called a conformally
flat metric if there exists a locally Minkowski metric F̃ = F̃ (y) such that
F = eκ(x)F̃ , where κ = κ(x) is a scalar function on M . A new and hot issue
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is to characterization of conformally flat Finsler metrics. In [2], Asanov con-
structed a Finslerian metric function on the manifold N = R ×M , where
M is a Riemannian manifold endowed with two real functions, and showed
that the tangent Minkowski spaces of such a Finsler space are conformally
flat. This motivated him to propose a Finslerian extension of the electro-
magnetic field equations whose solutions are explicit images of the solutions
to the ordinary Maxwell equations.

In order to find conformally flat Finsler metrics, we consider the class of
m-th root Finsler metrics. Let (M,F ) be an n-dimensional Finsler manifold,
TM its tangent bundle and (xi, yi) the coordinates in a local chart on TM .
Let F : TM → R be a scalar function defined by F = m

√
A, where A is

given by A := ai1...im(x)y
i1yi2 . . . yim such that ai1...im is symmetric in all

its indices. Then F is called an m-th root Finsler metric. An m-th root
Finsler metric can be regarded as a direct generalization of a Riemannian
metric in the sense that the 2-th root metric is a Riemannian metric F =√
aij(x)yiyj . The fourth root metrics F = 4

√
aijkl(x)yiyjykyl are called

the quartic metrics. The special quartic metric F = 4
√
yiyjykyl is called

Berwald-Moór metric which plays an important role in theory of space-time
structure, gravitation and general relativity. For more progress, see [6], [7],
[8] and [10].

In [9], the first author and Razgordani proved that every conformally
flat weakly Einstein 4-th root (α, β)-metric on a manifold M of dimension
n ≥ 3 is either a Riemannian metric or a locally Minkowski metric. Also,
they showed that every conformally flat 4-th root (α, β)-metric of almost
vanishing Ξ-curvature on a manifold M of dimension n ≥ 3 reduces to a
Riemannian metric or a locally Minkowski metric. In this paper, we study
conformally flat 4-th root (α, β)-metric with relatively isotropic mean Lands-
berg curvature. More precisely, we prove the following.
Theorem 1.1. Let F = F (x, y) be a conformally flat 4-th root (α, β)-metric
on a manifold M of dimension n ≥ 3. Suppose that F has relatively isotropic
mean Landsberg curvature
(1.1) J+ c(x)F I = 0,

where c = c(x) is a scalar function on M . Then F reduces to a Riemannian
metric or a locally Minkowski metric.

2. Preliminaries

Let M be a n-dimensional C∞ manifold and TM =
∪

x∈M TxM the tan-
gent bundle. Let (M,F ) be a Finsler manifold. The following quadratic
form gy on TxM is called fundamental tensor

gy(u, v) =
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s=t=0, u, v ∈ TxM.

Let x ∈M and Fx := F |TxM . To measure the non-Euclidean feature of Fx,
for a non-zero vector y ∈ TxM0 := TxM − {0}, define Cy : TxM × TxM ×
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TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
t=0

=
1

4

∂3

∂r∂s∂t

[
F 2(y+ru+sv+tw)

]
r=s=t=0

,

where u, v, w ∈ TxM . By definition, Cy is a symmetric trilinear form on
TxM . The family C := {Cy}y∈TM0 is called the Cartan torsion. Thus C = 0
if and only if F is Riemannian.

For y ∈ TxM0, define Iy : TxM → R by

Iy(u) =

n∑
i=1

gij(y)Cy(u, ∂i, ∂j),

where {∂i} is a basis for TxM at x ∈ M . The family I := {Iy}y∈TM0 is
called the mean Cartan torsion. Thus, Iy(u) := Ii(y)u

i, where Ii := gjkCijk.
On the slit tangent bundle TM0, the Landsberg curvature Lijk := Lijkdx

i⊗
dxj ⊗ dxk is defined by Lijk := Cijk;my

m, where ”; ” denotes the horizontal
covariant derivative with respect to F . Further, the Landsberg curvature
can be expressed as following

Lijk = −1

2
FFym [G

m]yiyjyk(2.1)

A Finsler metric is called the Landsberg metric if Lijk = 0.

The horizontal covariant derivatives of the mean Cartan torsion I along
geodesics give rise to the mean Landsberg curvature Jy : TxM → R which
are defined by Jy(u) := Ji(y)u

i, where
Ji := Ii|sy

s.

Here, “|” denotes the horizontal covariant derivative with respect to the
Berwald connection of F . The family J := {Jy}y∈TM0 is called the mean
Landsberg curvature. Also, the mean Landsberg curvature can be expressed
as following

Ji := gjkLijk(2.2)
A Finsler metric F on a manifold M is called of relatively isotropic mean
Landsberg curvature if

J+ cF I = 0,

where c = c(x) is a scalar function on M .
In this paper, we will focus on studying regular (α, β)-metrics. Let “|”

denote the covariant derivative with respect to the Levi-Civita connection
of α. Denote

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i)

sij := aimsmj , rij := aimrmj , rj := birij , sj := bisij ,

where (aij) := (aij)
−1 and bj := ajkbk. We put

r0 := riy
i, s0 := siy

i, r00 := rijy
iyj , si0 := sijy

j .
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Let Gi and Gi
α denote the geodesic coefficients of F and α respectively in

the same coordinate system. Then we have
Gi = Gi

α + αQsi0 + {r00 − 2Qαs0}{Ψbi +Θα−1yi},(2.3)
where

Q :=
ϕ′

ϕ− sϕ′
,

Θ :=
ϕϕ′ − s(ϕϕ′′ + ϕ′ϕ′)

2ϕ[ϕ− sϕ′ + (b2 − s2)ϕ′′]
,

Ψ :=
ϕ′′

2[ϕ− sϕ′ + (b2 − s2)ϕ′′]
.

For more details, see [4]. Let
∆ := 1 + sQ+ (b2 − s2)Q′,

Φ := −(n∆+ 1 + sQ)(Q− sQ′)− (b2 − s2)(1 + sQ)Q′′,

Ψ1 :=
√
b2 − s2∆

1
2

[√
b2 − s2Φ

∆
3
2

]′
,

hj := bj − α−1syj :

By (2.1), (2.2), (2.3), the mean Landsberg curvature of the (α, β)-metric
F = αϕ(s), s = β/α, is given by

Jj =
1

2α4∆

{
2α3

b2 − s2

[Φ
∆

+ (n+ 1)(Q− sQ′)
]
(s0 + r0)hj

+
α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj

+ α
[
− α2Q′s0hj + αQ(α2sj − yjs0) + α2∆sj0

+ α2(rj0 − 2αQsj)− (r00 − 2αQs0)yj

]Φ
∆

}
.

Here, yj = aijy
i. See [3] and [5].

3. Proof of Theorem 1.1

in this section, we are going to prove Theorem 1.1. To prove it, we need
the following.

Lemma 3.1. ([3]) For an (α, β)-metric F = αϕ(s), s = β/α, the mean
Cartan torsion is given by

Ii = − 1

2F

Φ

∆
(ϕ− sϕ′)hi.(3.1)

In [3], the following was proved.
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Lemma 3.2. ([3]) An (α, β)-metric F is a Riemannian metric if and only
if Φ = 0.

In [3], the following formula obtained

Jj + c(x)FIj = − 1

2α4∆

{
2α3

b2 − s2

[
Φ

∆
+ (n+ 1)(Q− sQ′)

]
(s0 + r0)hj

+
α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj

+α

[
− α2Q′s0hj + αQ(α2sj − yjs0) + α2∆sj0 + α2(rj0 − 2αQsj)

−(r00 − 2αQs0)yj

]
Φ

∆
+ c(x)α4Φ(ϕ− sϕ′)hj

}
.(3.2)

Also, we remark the following key lemma.

Lemma 3.3. ([1]) Let F = αϕ(s), s = β/α, be an (α, β)-metric. Then F
is locally Minkowskian if and only if α is a flat Riemannian metric and β
is parallel with respect to α.

Also, the following holds.

Lemma 3.4. ([3]) If ϕ = ϕ(s) satisfies Ψ1 = 0, then F is Riemannian.

Now, assume that F = αϕ(s), s = β/α, is a conformally flat Finsler
metric, that is, F is conformally related to a Minkowski metric F̃ . Then
there exists a scalar function σ = σ(x) on the manifold, so that F̃ = eσ(x)F .
It is easy to see that F̃ = α̃ϕ(s̃), s̃ = β̃/α̃. We have α̃ = eσ(x)α and
β̃ = eσ(x)β which are equivalent to

ãij = e2σ(x)aij , b̃i = eσ(x)bi.

Let “∥” denote the covariant derivative with respect to the Levi-Civita con-
nection of α̃. Put σi := ∂σ/∂xi and σi := aijσj . The Christoffel symbols
Γi
jk of α and the Christoffel symbols Γ̃i

jk of α̃ are related by

Γ̃i
jk = Γi

jk + δijσk + δikσj − σiajk.

Hence, one can obtain

b̃i∥j =
∂b̃i
∂xj

− b̃sΓ̃
i
jk = eσ(bi|j − bjσi + brσ

raij).(3.3)
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By Lemma 3.31, for Minkowski metric F̃ , we have b̃i∥j = 0. Thus

bi|j = bjσi − brσ
raij ,(3.4)

rij =
1

2
(σibj + σjbi)− brσ

raij , sij =
1

2
(σibj + σjbi),(3.5)

rj = −1

2
(brσ

r)bj +
1

2
σjb

2, sj =
1

2
(brσ

r)bj − σjb
2,(3.6)

ri0 =
1

2
[σiβ + (σry

r)bi]− σrb
ryi, si0 =

1

2
[σiβ + (σry

r)bi].(3.7)

Further, we have

r00 = (σry
r)β − (σry

r)α2, r0 =
1

2
(σry

r)b2 − 1

2
(σrb

r)β, s0 =
1

2
(σry

r)β − 1

2
(σry

r)b2.

(3.8)

By (3.8), the conformally flat (α, β)-metrics satisfying r0 + s0 = 0 which
is equivalent to the length of β with respect to α being a constant. We
take an orthonormal basis at any point x with respect to α such that α =√∑n

i=1(y
i)2 and β = by1, where b := ∥βx∥α. By using the same coordinate

transformation ψ : (s, uA) −→ (yi) in TxM , we get

y1 =
s√

b2 − s2
ᾱ, yA = uA, 2 ≤ A ≤ n,(3.9)

where ᾱ =
√∑n

i=2(u
A)2. We have

α =
b√

b2 − s2
ᾱ, β =

bs√
b2 − s2

ᾱ.(3.10)

Put σ̄0 := σAu
A. Then, by (3.5)-(3.7), (3.9) and (3.10) we have

r00 = −bσ1ᾱ2 +
bsσ̄0ᾱ√
b2 − s2

, r0 =
1

2
b2σ̄0 = −s0, r10 =

1

2
bσ̄0,(3.11)

rA0 =
1

2

σAbsᾱ√
b2 − s2

− (bσ1)uA, s1 = 0, sA = −1

2
σAb

2,(3.12)

s10 =
1

2
bσ̄0, sA0 =

1

2

σAbsᾱ√
b2 − s2

,(3.13)

h1 = b− s2

b
, hA = −

√
b2 − s2suA

bᾱ
.(3.14)

Proof of Theorem 1.1: We remark that b̃ = constant. If b̃ = 0, then
F = ek(x)α̃ is a Riemannian metric. Now, let F is not Riemannian metric.
Assume that F is a conformally flat (α, β)-metric with relatively isotropic
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mean Landsberg curvature. By (3.2) and r0 + s0 = 0, we get
α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj + α

[
− α2Q′s0hj + αQ(α2sj − yjs0)

+ α2∆sj0 + α2(rj0 − 2αQsj)− (r00 − 2αQs0)yj

]Φ
∆

+ c(x)α4Φ(ϕ− sϕ′)hj = 0.

(3.15)

Letting j = 1 in (3.15), we have
α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)h1 + α

[
− α2Q′s0h1 + αQ(α2s1 − y1s0)

+ α2∆s10 + α2(r10 − 2αQs1)− (r00 − 2αQs0)y1
]Φ
∆

+ c(x)α4Φ(ϕ− sϕ′)h1 = 0.

(3.16)

Putting (3.10)-(3.14) into (3.16) and multiplying the result with 2∆(b2 −
s2)5/2 implies that
2b2(b2 − s2)3/2∆(bΦϕc− bΦsϕ′c−Ψ1σ1)ᾱ

4 + b2(b2 − s2)σ̄0(b
4ΦQ′ − b2Φ∆− b2ΦQ′s2)

+ 2b2Ψ1∆Q+ b2Φ+ b2ΦQs+ 2Ψ1∆s)ᾱ
3 = 0.

(3.17)

From (3.17), we get

∆[bΦϕc− bΦsϕ′c−Ψ1σ1] = 0,

(3.18)

σ̄0(b
4ΦQ′ − b2Φ∆− b2ΦQ′s2) + 2b2Ψ1∆Q+ b2Φ+ b2ΦQs+ 2Ψ1∆s) = 0.

(3.19)

Note that ∆ = Q′(b2 − s2) + sQ+ 1. Simplifying (3.19) yields
(b2Ψ1∆Q+Ψ1∆s)σ̄0 = 0,

that is
Ψ1∆(b2Q+ s)σ̄0 = 0.(3.20)

Letting j = A in (3.15), we have
α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hA + α

[
− α2Q′s0hA + αQ(α2sA − yAs0)

+ α2∆sA0 + α2(rA0 − 2αQsA)− (r00 − 2αQs0)yA
]Φ
∆

+ c(x)α4Φ(ϕ− sϕ′)hA = 0.

(3.21)

Putting (3.10)-(3.14) into (3.21) and by using the similar method used in
the case of j = 1, we get

−(s∆+ s+ b2Q)b2ΦσAᾱ
2 +

[
(s∆+ s+ b2Q)b2Φ+ 2s(b2Q+ s)Ψ1∆

]
σ̄0uA = 0,

(3.22)

s(b2 − s2)[b(ϕ− sϕ′)Φc−Ψ1σ1]∆uA = 0.(3.23)
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It is easy to see that (3.23) is equivalent to (3.18). Further, multiplying
(3.22) with uA implies that

s(b2Q+ s)Ψ1∆σ̄0ᾱ
2 = 0.(3.24)

It is easy to see that (3.24) is equivalent to (3.20). In summary, confor-
mally flat (α, β)-metrics with relatively isotropic mean Landsberg curvature
satisfy (3.18) and (3.20). According to (3.20), we have some cases as follows:

Case (i): If b2Q + s = 0, then we have ϕ = κ
√
b2 − s2, which is a con-

tradiction with the assumption that ϕ = ϕ(s) is ϕ(s) = 4
√
a1 + a2s2 + a3s4,.

Then we have b2Q+ s ̸= 0.

Case (ii): If Ψ1 = 0, then by Lemma 3.4, F is Riemannian.

Case (iii): If Ψ1 ̸= 0, then σA = 0. In the following, we prove that if
Ψ1 ̸= 0, then by (3.18) one can get σ1 = 0.
Assume that

ϕ =
4
√
a1 + a2s2 + a3s4, 4a1a3 − a22 ̸= 0(3.25)

here a1, a2, a3 are numbers independent of s and ai ̸= 0, i = 1, 2, 3. Simpli-
fying (3.18) and multiplying it by ∆2, we get

{
[−sΦ+ (b2 − s2)Φ′]∆− 3

2
(b2 − s2)Φ∆′

}
σ1 − b∆2Φ(ϕ− sϕ′)c = 0 :

(3.26)

Putting (3.25) into (3.26) and multiplying it by

−(a2s
2 + 2a1)

14 4
√

(a1 + a2s2 + a3s4)3(3.27)
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by using maple program, we can obtain the following

2

[(
(n− 8)b2 − 3ns2 + 6s2

)
b2a52s

10 +

{
(−n+ 8)b6a1s

6 + (9n− 72)b4a1s
8 + (−16n+ 128)a1b

2s10

+ (24− 48n)s12a1 −
(
(n− 8)b2 − 5ns2 + 4s2

)
b4a3s

10

}
a42 + 2

[{
(4n+ 7)b6s4 − (10n+ 160)b4s6

− (9n− 210)b2s8 + (40n− 32)s10
}
a21 +

(
3(n− 8)b4 + (−2n+ 16)b2s2 + (13n+ 22)s4

)
b2a1a3s

8

+ (n+ 1)b6s12a23

]
a32 + 4s2

{(
− (3n+ 18)b6 − (3n+ 141)b4s2 + (94− 11)b2s4 + (36n+ 48)s6

)
a21

s4
(
(5n− 82)b6 + (83n− 94)b2s4 − (28n− 80)s6

)
a3a1 +

(
2(n− 8)b2 + (n+ 19)s2

)
b4a23s

8

}
a1a

2
2

− 8

[(
(6n+ 18)b4s2 + (3n+ 42)b2s4 − (16n− 64)s6 − 3b6

)
a21 +

[
(15n+ 36)b6 + (2n− 52)b4s2

+ 3(34− 17)b2s4 + 3(8n− 32)s6
]
a3a1s

4 +
[
(9n+ 15)b4 + (2− 2n)b2s2 + 10(n− 2)s4

]
b2a23s

8

]
a21a2

− 16

{(
(3n+ 18)b2s2 − (4n− 16)s4

)
a21 +

[
(15n− 54)b4s2 + (82− 29n)b2s4 + (12n− 48)s6

]
a1a3s

2

+
[
18(n− 1)b6 + (69− 45n)b4s2 + (34n− 68)b2s4 − (8n+ 16)s6

]
a23s

6

}
a31

]
(4a1a3 − a22)σ1

−

{(
6na22 + 4a2a3b

2(n+ 1)− 16a1a3(n− 2)
)
s6 +

(
(4− 2n)a22b

2 + 8(n+ 4)a1a2 + 24nb2a1a3

)
s4

+
(
4(n− 5)b2a2 + 8(n+ 4)a1

)
a1s

2 − 24b2a21

}
(4a1a3 − a22)(a2s

2 + 2a1)
7

(
(a2a3b

2 − 4a1a3 +
3

2
a22)s

4

+ (6b2a1a3 −
1

2
b2a22 + 2a1a2)s

2 + a1(a2b
2 + 2a1)

)
.

(3.28)

Let us put

ν :=
1

(4a1a3 − a22)
.

Multiplying (3.28) with ν implies that

Π1s
25 +Π2s

24 + ...+Π25s+Π26 = 0,(3.29)
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where Πi(1 ≤ i ≤ 25), are polynomials of a1, a2, a3, b, c, and σ1. Equation
(3.29) is equivalent to the following two equations

Π1s
25 +Π3s

23 + ...+Π23s
3 +Π25s = 0,(3.30)

Π2s
24 +Π4s

22 + ...+Π24s
2 +Π26 = 0,(3.31)

where Π26 = 96b4a51σ1 . (3.31) implies that Π26 = 0, because b ̸= 0 and
a1 ̸= 0, then Π26 = 0 implies that σ1 = 0 .Together with A = 0, it follows
that σ is a constant, which means that F is a locally Minkowski metric.
This completes the proof. □
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